This paper proves that for every convex body in R^n there exist 5n-4Minkowski symmetrizations, which transform the body into an approximateEuclidean ball. This result complements the sharp c n log n upper estimate byJ. Bourgain, J. Lindenstrauss and V.D. Milman, of the number of randomMinkowski symmetrizations sufficient for approaching an approximate Euclideanball.
展开▼
机译:本文证明,对于R ^ n中的每个凸体,都存在5n-4Minkowski对称性,这些对称性将其转换为近似的欧几里得球。该结果补充了J的急剧的c n log n上估计。布尔根(Bourgain),林登斯特劳斯(J. Milman,足以逼近近似欧几里得球的随机Minkowski对称数目。
展开▼